Methane pyrolysis (Thermocatalytic decomposition of methane)

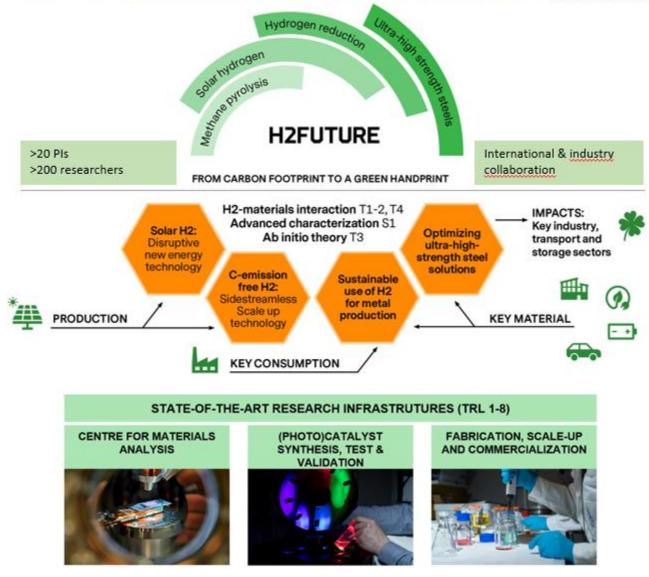
Prof. Ulla Lassi, University of Oulu, Finland 29.3.2023

Sustainable Chemistry Research Unit


28.3.2023

FACTS (2020):

Staff: 47


3 Full professor, 3 docents, 17 post docs
Degrees: 15 M.Sc., 3 Ph.D.
14 research projects (BF, AF, EU funded)
32 international publications, 2 pending patents
Close company collaboration

Several disciplines in chemistry

RESEA	RCH FOCUS AREAS IN APPLIED CHEMISTRY	(Scientific results during past years)
Ι.	Lithium-ion battery chemicals	(3 PhD, 6 PhD students, 20 M.Sc., publ.,)
	Metals recovery, leaching, and precipitation	
II.	New water treatment chemicals and solutions	(6 PhD, 6 PhD students, 10 M.Sc., 30 publ)
III.	Catalysis in biomass conversion	(5 PhD, 4 PhD students, 6 M.Sc., 15 publ.)
IV.	Technical carbons and applications	(3 PhD, 3 M.Sc., 20 publ.)

H2FUTURE - Multidisciplinary Research and Education as a Foundation of the Green Transition

- National profilation project H2FUTURE 2023-2028
- CO₂ free and energy efficient H2 production methods: solar H2 and (bio)methane pyrolysis
- Energy materials research: electroceramics
- Solar panels and nanocoatings
- Coordination of Hydrogen Research Forum Finland (9 research organization members): Research based view on hydrogen transition
- National graduate school on H2 transition under construction
- I4WORLD EU-Horizon MSCA docotoral program focusing on UN SDG themes.
- Offering courses on energy technology and systems, minor on sustainable development
- Open university and continuous learning, education on H2 transition (FiTech) and UNIC collaboration

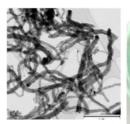
Hydrogen roadmap – Sustainable chemistry

2008-2015

FT synthesis

Catalytic conversion of biomass-derived synthesis gas to olefins/FT diesel

Collaboration with LTU & NTNU


PhD thesis Romar 2015 PhD thesis Tuomikoski 2014


2015-2021

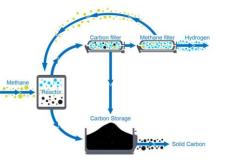
Methane pyrolysis to hydrogen and carbon

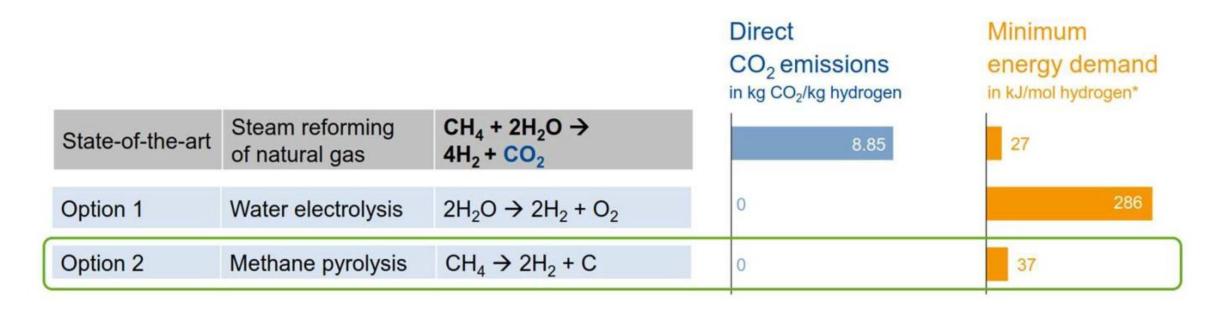
Carbon applications (activated carbon, carbon foams, carbon catalysis) Carbon use in batteries

Hydrogen reduction (with MET)

PhD thesis Bergna 2019

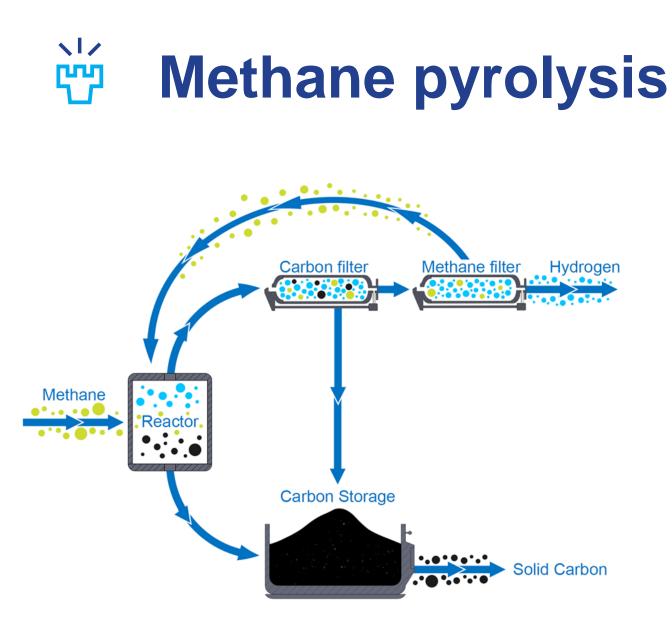
PhD thesis Kupila 2021


PhD thesis Varila 2020



2022-

Improved material efficiency for **methane pyrolysis** (use of secondary materials)


Hydrogen reduction in metallurgical industry (with MET)

Production of hydrogen (options)

 Daloz, W., Frederik Scheiff, Kai Ehrhardt, Dieter Flick and Andreas Bode, The quest for CO2 - free hydrogen – methane pyrolysis at scale, ARPA-E Methane Cohort Kickoff, Houston (US), Dec 10, 2019.

TRL3 -> TRL7

Several innovations behind this:

- 1) Use of CO_2/CO free technology
- 2) Catalyst
- 3) Reactor set-up
- 4) Solid carbon for energy storage applications

TCD of (bio)methane

Table 1. Chemical reactions for hydrogen production from methane and corresponding reaction enthalpies. In the first three reactions (SMR, DRM, and PO), carbon is emitted as CO₂ or CO, whereas in TDM and TCD, solid deposits of carbon are formed.

Production Method	Chemical Equation	Reaction Enthalpies	Equation Number
Steam methane reforming (SMR)	$CH_4 + H_2O \rightarrow CO + 3H_2$	$\Delta H_{298K} = 206 \text{ kJ/mol}$	(1)
Water gas shift reaction (WGS)	$CO + H_2O \rightarrow CO_2 + H_2$	ΔH_{298K} = -41 kJ/mol	(2)
Dry reforming of methane (DRM)	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	∆Н298к = 247 kJ/mol	(3)
Partial oxidation (PO)	$\mathrm{CH_4} + 0.5\mathrm{O_2} \xrightarrow{} \mathrm{CO} + 2\mathrm{H_2}$	ΔH298K = -23 kJ/mol	(4)
Thermal decomposition of methane (TDM) Thermocatalytic decomposition of methane (TCD)	$CH_4 \rightarrow C + 2H_2$	$\Delta H_{298K} = 75 \text{ kJ/mol}$	(5)

Välimäki, Emmi; Yli-Varo, Lasse; Romar, Henrik; Lassi, Ulla (2021) Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications., C. 7 (3), 50 . http://dx.doi.org/10.3390/c7030050

Catalysts

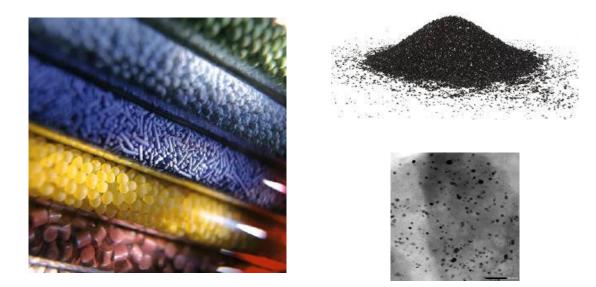
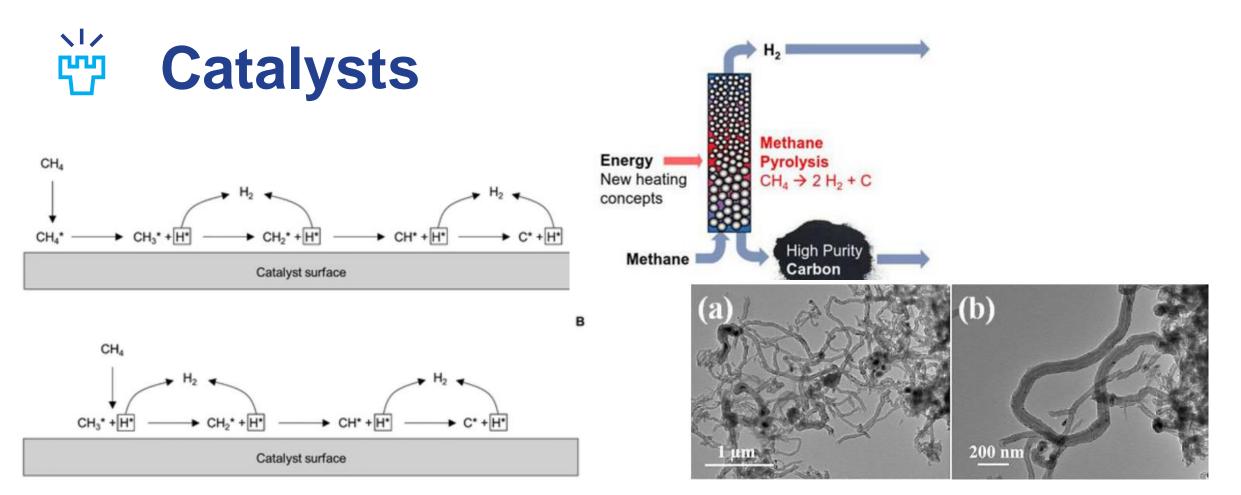



Table 2. Initial Activity of Nickel, Iron, and Cobalt Catalysts in the Decomposition of Methane for Hydrogen Production

catalyst	<i>T</i> [°C]	P [atm]	$CH_4/N_2 \ [vol \ vol^{-1}]$	flow rate $[mL min^{-1}]$	space velocity $[mL h^{-1} g_{cat}^{-1}]$	H ₂ yield [%]	ref
Ni/CeO ₂	700	1	1/0	150	4500	53	139
Ni/La ₂ O ₃	700	1	1/0	150	4500	60	139
Ni/SiO ₂	700	1	1/0	60	7200	73	140
Fe/CeO ₂	700	1	1/0	150	4500	51	141
Fe/La ₂ O ₃	700	1	1/0	150	4500	40	141
Fe/SiO ₂	700	1	3/7	70	42000	20	94
Ni/SiO ₂	800	1	1/0	250	5000	74	134
Fe/SiO ₂	800	1	1/0	250	5000	39	134
Co/SiO ₂	800	1	1/0	250	5000	48	134

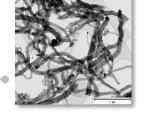
Ind. Eng. Chem. Res. 2021, 60, 32, 11855-11881

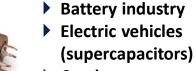
Ind. Eng. Chem. Res. 2021, 60, 32, 11855-11881

Välimäki, Emmi; Yli-Varo, Lasse; Romar, Henrik; Lassi, Ulla (2021) Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications., C. 7 (3), 50 . http://dx.doi.org/10.3390/c7030050

Sustainable Carbon as a secondary product supplementing the sales


Carbon nanotubes (CNT)


Carbon nanofibers (CNF)


Amorphous carbon \rightarrow activated carbon

Graphite

Graphite

CNT, CNF

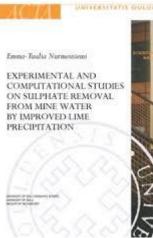
Catalysts

 Battery industry
 Lightweight materials for automotive and aerospace industry Activated carbon

• Water treatment

Pharmaceutical purification

Industrial applications


 Methane pyrolysis feasible technology for (bio)methane conversion to hydrogen and solid carbon

Currently under pre-commerzialization stage

• CO/CO₂ free technology

• Added-value from the utilization of carbon

Thanks for your attention!

A 724

C 742

INIVERSITATIS OULUENSIS

Professor Ulla Lassi, University of Oulu Head of Research Unit of Sustainable chemistry eMail: <u>ulla.lassi@oulu.fi</u>, tel: +358 400 294 090

Pekka Myllymäki

CHEMICAL PRECIPITATION IN THE SIMULTANEOUS REMOVAL OF NH₄-N AND PO₄-P FROM WASTEWATERS USING INDUSTRIAL WASTE MATERIALS

Battery chemistry research since 2007